在使用tensorflow中,我們常常需要獲取某個變量的值,比如:打印某一層的權重,通常我們可以直接利用變量的name屬性來獲取,但是當我們利用一些第三方的庫來構造神經網絡的layer時,存在一種情況:就是我們自己無法定義該層的變量,因為是自動進行定義的。
比如用tensorflow的slim庫時:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
<span style = "font-size:14px;" > def resnet_stack(images, output_shape, hparams, scope = None ):< / span> <span style = "font-size:14px;" > """Create a resnet style transfer block.</span> <span style="font-size:14px;"></span> <span style="font-size:14px;"> Args:</span> <span style="font-size:14px;"> images: [batch-size, height, width, channels] image tensor to feed as input</span> <span style="font-size:14px;"> output_shape: output image shape in form [height, width, channels]</span> <span style="font-size:14px;"> hparams: hparams objects</span> <span style="font-size:14px;"> scope: Variable scope</span> <span style="font-size:14px;"></span> <span style="font-size:14px;"> Returns:</span> <span style="font-size:14px;"> Images after processing with resnet blocks.</span> <span style="font-size:14px;"> """ < / span> <span style = "font-size:14px;" > end_points = {}< / span> <span style = "font-size:14px;" > if hparams.noise_channel:< / span> <span style = "font-size:14px;" > # separate the noise for visualization</span> <span style = "font-size:14px;" > end_points[ 'noise' ] = images[:, :, :, - 1 ]< / span> <span style = "font-size:14px;" > assert images.shape.as_list()[ 1 : 3 ] = = output_shape[ 0 : 2 ]< / span> <span style = "font-size:14px;" >< / span> <span style = "font-size:14px;" > with tf.variable_scope(scope, 'resnet_style_transfer' , [images]):< / span> <span style = "font-size:14px;" > with slim.arg_scope(< / span> <span style = "font-size:14px;" > [slim.conv2d],< / span> <span style = "font-size:14px;" > normalizer_fn = slim.batch_norm,< / span> <span style = "font-size:14px;" > kernel_size = [hparams.generator_kernel_size] * 2 ,< / span> <span style = "font-size:14px;" > stride = 1 ):< / span> <span style = "font-size:14px;" > net = slim.conv2d(< / span> <span style = "font-size:14px;" > images,< / span> <span style = "font-size:14px;" > hparams.resnet_filters,< / span> <span style = "font-size:14px;" > normalizer_fn = None ,< / span> <span style = "font-size:14px;" > activation_fn = tf.nn.relu)< / span> <span style = "font-size:14px;" > for block in range (hparams.resnet_blocks):< / span> <span style = "font-size:14px;" > net = resnet_block(net, hparams)< / span> <span style = "font-size:14px;" > end_points[ 'resnet_block_{}' . format (block)] = net< / span> <span style = "font-size:14px;" >< / span> <span style = "font-size:14px;" > net = slim.conv2d(< / span> <span style = "font-size:14px;" > net,< / span> <span style = "font-size:14px;" > output_shape[ - 1 ],< / span> <span style = "font-size:14px;" > kernel_size = [ 1 , 1 ],< / span> <span style = "font-size:14px;" > normalizer_fn = None ,< / span> <span style = "font-size:14px;" > activation_fn = tf.nn.tanh,< / span> <span style = "font-size:14px;" > scope = 'conv_out' )< / span> <span style = "font-size:14px;" > end_points[ 'transferred_images' ] = net< / span> <span style = "font-size:14px;" > return net, end_points< / span> |
我們希望獲取第一個卷積層的權重weight,該怎么辦呢??
在訓練時,這些可訓練的變量會被tensorflow保存在 tf.trainable_variables() 中,于是我們就可以通過打印 tf.trainable_variables() 來獲取該卷積層的名稱(或者你也可以自己根據scope來看出來該變量的name ),然后利用tf.get_default_grap().get_tensor_by_name 來獲取該變量。
舉個簡單的例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
<span style = "font-size:14px;" > import tensorflow as tf< / span> <span style = "font-size:14px;" >with tf.variable_scope( "generate" ):< / span> <span style = "font-size:14px;" > with tf.variable_scope( "resnet_stack" ):< / span> <span style = "font-size:14px;" > #簡單起見,這里沒有用第三方庫來說明,</span> <span style = "font-size:14px;" > bias = tf.Variable( 0.0 ,name = "bias" )< / span> <span style = "font-size:14px;" > weight = tf.Variable( 0.0 ,name = "weight" )< / span> <span style = "font-size:14px;" >< / span> <span style = "font-size:14px;" > for tv in tf.trainable_variables():< / span> <span style = "font-size:14px;" > print (tv.name)< / span> <span style = "font-size:14px;" >< / span> <span style = "font-size:14px;" >b = tf.get_default_graph().get_tensor_by_name( "generate/resnet_stack/bias:0" )< / span> <span style = "font-size:14px;" >w = tf.get_default_graph().get_tensor_by_name( "generate/resnet_stack/weight:0" )< / span> <span style = "font-size:14px;" >< / span> <span style = "font-size:14px;" >with tf.Session() as sess:< / span> <span style = "font-size:14px;" > tf.global_variables_initializer().run()< / span> <span style = "font-size:14px;" > print (sess.run(b))< / span> <span style = "font-size:14px;" > print (sess.run(w)) < / span> |
結果如下:
以上這篇tensorflow 獲取變量&打印權值的實例講解就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持服務器之家。
原文鏈接:https://blog.csdn.net/cassiePython/article/details/79179044