大家好,我是辣條。
曾經有一個真摯的機會,擺在我面前,但是我沒有珍惜,等到失去的時候才后悔莫及,塵世間最痛苦的事莫過于此,如果老天可以再給我一個再來一次機會的話,我會買下那個比特幣,哪怕付出所有零花錢,如果非要在這個機會加上一個期限的話,我希望是十年前。
看著這份臺詞是不是很眼熟,我稍稍改了一下,曾經差一點點點就購買比特幣了,腸子都悔青了現在,今天對比特幣做一個簡單的數據分析。
# 安裝對應的第三方庫 !pip install pandas !pip install numpy !pip install seaborn !pip install matplotlib !pip install sklearn !pip install tensorflow
使用技術點:
1. 數據處理 - pandas
2. 科學運算 - numpy
3. 數據可視化 - seaborn matplotlib
使用工具:
1. anaconda
2. notebook
3. python3.7版本
導入第三方庫
#a|T + enter notebook運行方式 import pandas as pd # 數據處理 import numpy as np # 科學運算 import seaborn as sns # 數據可視化 import matplotlib.pyplot as plt # 數據可視化 import warnings import warnings warnings.filterwarnings("ignore")
如遇到導包報錯 可以看看是不是自己的第三方庫的版本問題
# 設置圖表與 線格式 plt.rcParams["figure.figsize"] = (10, 10) plt.rcParams["lines.linewidth"] = 2 plt.style.use("ggplot") # 讀取數據集 df = pd.read_csv("./DOGE-USD.csv") df.head() # 查看前5行
Date | Open | High | Low | Close | Adj Close | Volume | |
---|---|---|---|---|---|---|---|
0 | 2014-09-17 | 0.000293 | 0.000299 | 0.000260 | 0.000268 | 0.000268 | 1463600.0 |
1 | 2014-09-18 | 0.000268 | 0.000325 | 0.000267 | 0.000298 | 0.000298 | 2215910.0 |
2 | 2014-09-19 | 0.000298 | 0.000307 | 0.000275 | 0.000277 | 0.000277 | 883563.0 |
3 | 2014-09-20 | 0.000276 | 0.000310 | 0.000267 | 0.000292 | 0.000292 | 993004.0 |
4 | 2014-09-21 | 0.000293 | 0.000299 | 0.000284 | 0.000288 | 0.000288 | 539140.0 |
df.isnull().sum() # 統計缺失值的總和(sum()) Date 0 Open 5 High 5 Low 5 Close 5 Adj Close 5 Volume 5 dtype: int64 df.duplicated().sum() # 查看重復值 0 # 數據類型 分布基本情況 df.info() <class "pandas.core.frame.DataFrame"> RangeIndex: 2591 entries, 0 to 2590 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Date 2591 non-null object 1 Open 2586 non-null float64 2 High 2586 non-null float64 3 Low 2586 non-null float64 4 Close 2586 non-null float64 5 Adj Close 2586 non-null float64 6 Volume 2586 non-null float64 dtypes: float64(6), object(1) memory usage: 141.8+ KB # 轉換 Date的類型 df["Date"] = pd.to_datetime(df.Date, dayfirst=True) # 索引重置 讓Date時間格式成為 索引 inplace新建對象 df.set_index("Date", inplace=True) df
Open | High | Low | Close | Adj Close | Volume | |
---|---|---|---|---|---|---|
Date | ||||||
2014-09-17 | 0.000293 | 0.000299 | 0.000260 | 0.000268 | 0.000268 | 1.463600e+06 |
2014-09-18 | 0.000268 | 0.000325 | 0.000267 | 0.000298 | 0.000298 | 2.215910e+06 |
2014-09-19 | 0.000298 | 0.000307 | 0.000275 | 0.000277 | 0.000277 | 8.835630e+05 |
2014-09-20 | 0.000276 | 0.000310 | 0.000267 | 0.000292 | 0.000292 | 9.930040e+05 |
2014-09-21 | 0.000293 | 0.000299 | 0.000284 | 0.000288 | 0.000288 | 5.391400e+05 |
... | ... | ... | ... | ... | ... | ... |
2021-10-16 | 0.233881 | 0.244447 | 0.233683 | 0.237292 | 0.237292 | 1.541851e+09 |
2021-10-17 | 0.237193 | 0.241973 | 0.226380 | 0.237898 | 0.237898 | 1.397143e+09 |
2021-10-18 | 0.237806 | 0.271394 | 0.237488 | 0.247281 | 0.247281 | 5.003366e+09 |
2021-10-19 | NaN | NaN | NaN | NaN | NaN | NaN |
2021-10-20 | 0.245199 | 0.246838 | 0.242384 | 0.246078 | 0.246078 | 1.187871e+09 |
2591 rows × 6 columns
df = df.asfreq("d") # 按照天數采集數據 df = df.fillna(method="bfill") # 缺失值填充 下一條數據填充 df
Open | High | Low | Close | Adj Close | Volume | |
---|---|---|---|---|---|---|
Date | ||||||
2014-09-17 | 0.000293 | 0.000299 | 0.000260 | 0.000268 | 0.000268 | 1.463600e+06 |
2014-09-18 | 0.000268 | 0.000325 | 0.000267 | 0.000298 | 0.000298 | 2.215910e+06 |
2014-09-19 | 0.000298 | 0.000307 | 0.000275 | 0.000277 | 0.000277 | 8.835630e+05 |
2014-09-20 | 0.000276 | 0.000310 | 0.000267 | 0.000292 | 0.000292 | 9.930040e+05 |
2014-09-21 | 0.000293 | 0.000299 | 0.000284 | 0.000288 | 0.000288 | 5.391400e+05 |
... | ... | ... | ... | ... | ... | ... |
2021-10-16 | 0.233881 | 0.244447 | 0.233683 | 0.237292 | 0.237292 | 1.541851e+09 |
2021-10-17 | 0.237193 | 0.241973 | 0.226380 | 0.237898 | 0.237898 | 1.397143e+09 |
2021-10-18 | 0.237806 | 0.271394 | 0.237488 | 0.247281 | 0.247281 | 5.003366e+09 |
2021-10-19 | 0.245199 | 0.246838 | 0.242384 | 0.246078 | 0.246078 | 1.187871e+09 |
2021-10-20 | 0.245199 | 0.246838 | 0.242384 | 0.246078 | 0.246078 | 1.187871e+09 |
2591 rows × 6 columns
In [14]:
# 開盤價的分布情況 df["Open"].plot(figsize=(12, 8))
結論:從上圖可以看出 BTB是在2021年份開始爆發式的增長 在2015 到 2021 一直都是沒有較大波動
# 成交情況 df["Volume"].plot(figsize=(12, 8))
# 投資價值 df["Total Pos"] = df.sum(axis=1) df["Total Pos"].plot(figsize=(10, 8))
結論:開盤價高 投資價值搞 比較合適做賣出操作 實現一夜暴富(開玩笑的)
# 當前元素與先前元素的相差百分比 df["Daily Reture"] = df["Total Pos"].pct_change(1) # 日收益率的平均 df["Daily Reture"].mean() df["Daily Reture"].plot(kind="kde")
SR = df["Daily Reture"].mean() / df["Daily Reture"].std() all_plot = df/df.iloc[0] all_plot.plot(figsize=(24, 16))
df.hist(bins=100, figsize=(12, 6))
# 按照年份進行采樣 df.resample(rule="A").mean()
Open | High | Low | Close | Adj Close | Volume | Total Pos | Daily Reture | |
---|---|---|---|---|---|---|---|---|
Date | ||||||||
2014-12-31 | 0.000249 | 0.000259 | 0.000240 | 0.000248 | 0.000248 | 8.059213e+05 | 8.059213e+05 | 1.028630 |
2015-12-31 | 0.000143 | 0.000147 | 0.000139 | 0.000143 | 0.000143 | 1.685476e+05 | 1.685476e+05 | 0.139461 |
2016-12-31 | 0.000235 | 0.000242 | 0.000229 | 0.000235 | 0.000235 | 2.564834e+05 | 2.564834e+05 | 0.259038 |
2017-12-31 | 0.001576 | 0.001708 | 0.001468 | 0.001601 | 0.001601 | 1.118996e+07 | 1.118996e+07 | 0.225833 |
2018-12-31 | 0.004368 | 0.004577 | 0.004125 | 0.004350 | 0.004350 | 2.172325e+07 | 2.172325e+07 | 0.109586 |
2019-12-31 | 0.002564 | 0.002631 | 0.002499 | 0.002563 | 0.002563 | 4.463969e+07 | 4.463969e+07 | 0.027981 |
2020-12-31 | 0.002736 | 0.002822 | 0.002660 | 0.002744 | 0.002744 | 1.290465e+08 | 1.290465e+08 | 0.052314 |
2021-12-31 | 0.200410 | 0.215775 | 0.185770 | 0.201272 | 0.201272 | 4.620961e+09 | 4.620961e+09 | 0.260782 |
# 年平均收盤價 df["Open"].resample("A").mean().plot.bar(title="Yearly Mean Closing Price", color=["#b41f7d"])
# 月度 df["Open"].resample("M").mean().plot.bar(figsize=(18, 12), color="red")
# 分別獲取對應時間窗口 6 12 2 均值 df["6-month-SMA"] = df["Open"].rolling(window=6).mean() df["12-month-SMA"] = df["Open"].rolling(window=12).mean() df["2-month-SMA"] = df["Open"].rolling(window=2).mean() df.head(10)
Open | High | Low | Close | Adj Close | Volume | Total Pos | Daily Reture | 6-month-SMA | 12-month-SMA | 2-month-SMA | |
---|---|---|---|---|---|---|---|---|---|---|---|
Date | |||||||||||
2014-09-17 | 0.000293 | 0.000299 | 0.000260 | 0.000268 | 0.000268 | 1463600.0 | 1.463600e+06 | NaN | NaN | NaN | NaN |
2014-09-18 | 0.000268 | 0.000325 | 0.000267 | 0.000298 | 0.000298 | 2215910.0 | 2.215910e+06 | 0.514013 | NaN | NaN | 0.000281 |
2014-09-19 | 0.000298 | 0.000307 | 0.000275 | 0.000277 | 0.000277 | 883563.0 | 8.835630e+05 | -0.601264 | NaN | NaN | 0.000283 |
2014-09-20 | 0.000276 | 0.000310 | 0.000267 | 0.000292 | 0.000292 | 993004.0 | 9.930040e+05 | 0.123863 | NaN | NaN | 0.000287 |
2014-09-21 | 0.000293 | 0.000299 | 0.000284 | 0.000288 | 0.000288 | 539140.0 | 5.391400e+05 | -0.457062 | NaN | NaN | 0.000285 |
2014-09-22 | 0.000288 | 0.000301 | 0.000285 | 0.000298 | 0.000298 | 620222.0 | 6.202220e+05 | 0.150391 | 0.000286 | NaN | 0.000291 |
2014-09-23 | 0.000298 | 0.000318 | 0.000295 | 0.000313 | 0.000313 | 739197.0 | 7.391970e+05 | 0.191826 | 0.000287 | NaN | 0.000293 |
2014-09-24 | 0.000314 | 0.000353 | 0.000310 | 0.000348 | 0.000348 | 1277840.0 | 1.277840e+06 | 0.728687 | 0.000295 | NaN | 0.000306 |
2014-09-25 | 0.000347 | 0.000383 | 0.000332 | 0.000375 | 0.000375 | 2393610.0 | 2.393610e+06 | 0.873169 | 0.000303 | NaN | 0.000331 |
2014-09-26 | 0.000374 | 0.000467 | 0.000373 | 0.000451 | 0.000451 | 4722610.0 | 4.722610e+06 | 0.973007 | 0.000319 | NaN | 0.000361 |
進行可視化 查看對應分布情況
df[["Open", "6-month-SMA", "12-month-SMA", "2-month-SMA"]].plot(figsize=(24, 10))
df[["Open","6-month-SMA"]].plot(figsize=(18,10))
df[["Open","6-month-SMA"]].iloc[:100].plot(figsize=(12,6)).autoscale(axis="x",tight=True)
df["EWMA12"] = df["Open"].ewm(span=14,adjust=True).mean() df[["Open","EWMA12"]].plot(figsize=(24,12))
df[["Open","EWMA12"]].iloc[:50].plot(figsize=(12,6)).autoscale(axis="x",tight=True)
以上就是python數據分析近年比特幣價格漲幅趨勢分布的詳細內容,更多關于python數據分析比特幣價格漲幅的資料請關注服務器之家其它相關文章!
原文鏈接:https://blog.csdn.net/AI19970205/article/details/121308638