在Python數(shù)據(jù)可視化中,seaborn較好的提供了圖形的一些可視化功效。
seaborn官方文檔見(jiàn)鏈接:http://seaborn.pydata.org/api.html
countplot是seaborn庫(kù)中分類圖的一種,作用是使用條形顯示每個(gè)分箱器中的觀察計(jì)數(shù)。接下來(lái),對(duì)seaborn中的countplot方法進(jìn)行詳細(xì)的一個(gè)講解,希望可以幫助到剛?cè)腴T的同行。
導(dǎo)入seaborn庫(kù)
1
|
import seaborn as sns |
使用countplot
1
|
sns.countplot() |
countplot方法中必須要x或者y參數(shù),不然就報(bào)錯(cuò)。
官方給出的countplot方法及參數(shù):
sns.countplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=0.75, dodge=True, ax=None, **kwargs)
下面講解countplot方法中的每一個(gè)參數(shù)。以泰坦尼克號(hào)為例。
原始數(shù)據(jù)如下:
1
2
3
|
sns. set (style = 'darkgrid' ) titanic = sns.load_dataset( 'titanic' ) titanic.head() |
x, y, hue : names of variables in ``data`` or vector data, optional. Inputs for plotting long-form data. See examples for interpretation.
第一種方式
x: x軸上的條形圖,以x標(biāo)簽劃分統(tǒng)計(jì)個(gè)數(shù)
y: y軸上的條形圖,以y標(biāo)簽劃分統(tǒng)計(jì)個(gè)數(shù)
hue: 在x或y標(biāo)簽劃分的同時(shí),再以hue標(biāo)簽劃分統(tǒng)計(jì)個(gè)數(shù)
1
|
sns.countplot(x = "class" , data = titanic) |
1
|
sns.countplot(y = "class" , data = titanic) |
1
|
sns.countplot(x = "class" , hue = "who" , data = titanic) |
第二種方法
x: x軸上的條形圖,直接為series數(shù)據(jù)
y: y軸上的條形圖,直接為series數(shù)據(jù)
1
|
sns.countplot(x = titanic[ 'class' ]) |
1
|
sns.countplot(y = titanic[ 'class' ]) |
data : DataFrame, array, or list of arrays, optional. Dataset for plotting.
If ``x`` and ``y`` are absent, this is interpreted as wide-form. Otherwise it is expected to be long-form.
data: DataFrame或array或array列表,用于繪圖的數(shù)據(jù)集,x或y缺失時(shí),data參數(shù)為數(shù)據(jù)集,同時(shí)x或y不可缺少,必須要有其中一個(gè)。
1
|
sns.countplot(x = 'class' , data = titanic) |
order, hue_order : lists of strings, optional.Order to plot the categorical levels in, otherwise the levels are inferred from the data objects.
order, hue_order分別是對(duì)x或y的字段排序,hue的字段排序。排序的方式為列表。
1
|
sns.countplot(x = 'class' , data = titanic, order = [ 'Third' , 'Second' , 'First' ]) |
1
|
sns.countplot(x = 'class' , hue = 'who' , data = titanic, hue_order = [ 'woman' , 'man' , 'child' ]) |
orient : "v" | "h", optional
Orientation of the plot (vertical or horizontal). This is usually
inferred from the dtype of the input variables, but can be used to
specify when the "categorical" variable is a numeric or when plotting
wide-form data.
強(qiáng)制定向,v:豎直方向;h:水平方向,具體實(shí)例未知。
color : matplotlib color, optional
Color for all of the elements, or seed for a gradient palette.
palette : palette name, list, or dict, optional.Colors to use for the different levels of the ``hue`` variable.
Should be something that can be interpreted by :func:`color_palette`, or a dictionary mapping hue levels to matplotlib colors.
palette:使用不同的調(diào)色板
1
|
sns.countplot(x = "who" , data = titanic, palette = "Set3" ) |
ax : matplotlib Axes, optional
Axes object to draw the plot onto, otherwise uses the current Axes.
ax用來(lái)指定坐標(biāo)系。
1
2
3
|
fig, ax = plt.subplots( 1 , 2 , figsize = ( 10 , 5 )) sns.countplot(x = 'class' , data = titanic, ax = ax[ 0 ]) sns.countplot(y = 'class' , data = titanic, ax = ax[ 1 ]) |
到此這篇關(guān)于Python中seaborn庫(kù)之countplot的數(shù)據(jù)可視化使用的文章就介紹到這了,更多相關(guān)Python seaborn庫(kù)countplot內(nèi)容請(qǐng)搜索服務(wù)器之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持服務(wù)器之家!
原文鏈接:https://www.cnblogs.com/cymx66688/p/10536403.html