激情久久久_欧美视频区_成人av免费_不卡视频一二三区_欧美精品在欧美一区二区少妇_欧美一区二区三区的

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - 解決Ubuntu18中的pycharm不能調用tensorflow-gpu的問題

解決Ubuntu18中的pycharm不能調用tensorflow-gpu的問題

2020-09-17 13:44AnswerThe Python

這篇文章主要介紹了解決Ubuntu18中的pycharm不能調用tensorflow-gpu的問題,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧

問題描述:我通過控制臺使用tensorflow-gpu沒問題,但是通過pycharm使用卻不可以,如下所示:

通過控制臺:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
answer@answer-desktop:/$ python
Python 3.7.0 (default, Jun 28 2018, 13:15:42)
[GCC 7.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
2020-02-04 21:37:12.964610: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.1/lib64:/usr/local/cuda-10.1/lib64
2020-02-04 21:37:12.964749: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-10.1/lib64:/usr/local/cuda-10.1/lib64
2020-02-04 21:37:12.964777: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
>>> print(tf.test.is_gpu_available())
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2020-02-04 21:37:37.267421: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1795795000 Hz
2020-02-04 21:37:37.268461: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55913b67a840 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-02-04 21:37:37.268516: I tensorflow/compiler/xla/service/service.cc:176]  StreamExecutor device (0): Host, Default Version
2020-02-04 21:37:37.272139: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-02-04 21:37:37.481038: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.481712: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55913b6eb960 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-02-04 21:37:37.481755: I tensorflow/compiler/xla/service/service.cc:176]  StreamExecutor device (0): GeForce GTX 1060 3GB, Compute Capability 6.1
2020-02-04 21:37:37.482022: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.482528: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:03:00.0 name: GeForce GTX 1060 3GB computeCapability: 6.1
coreClock: 1.7085GHz coreCount: 9 deviceMemorySize: 5.93GiB deviceMemoryBandwidth: 178.99GiB/s
2020-02-04 21:37:37.482953: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-02-04 21:37:37.485492: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-02-04 21:37:37.487486: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-02-04 21:37:37.487927: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-02-04 21:37:37.490469: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-02-04 21:37:37.491950: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-02-04 21:37:37.499031: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-02-04 21:37:37.499301: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.500387: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.500847: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2020-02-04 21:37:37.500941: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-02-04 21:37:37.502172: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-04 21:37:37.502212: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102]   0
2020-02-04 21:37:37.502229: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0:  N
2020-02-04 21:37:37.502436: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.503003: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-04 21:37:37.503593: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/device:GPU:0 with 2934 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 3GB, pci bus id: 0000:03:00.0, compute capability: 6.1)
True
>>>

返回的True,說明可以

通過pycharm卻不行,如下圖,返回False

解決Ubuntu18中的pycharm不能調用tensorflow-gpu的問題

解決辦法:

1.修改~/.bashrc

將pycahrm的路徑加到環境中,示例如下:

?
1
alias pycharm="bash /home/answer/文檔/pycharm-professional-2019.3.2/pycharm-2019.3.2/bin/pycharm.sh"

刷新生效:

?
1
source ~/.bashrc

2.修改pycharm中的環境變量

選擇pycharm 菜單欄Run ——> Run-Edit Configurations ——> Environment variables——> 將cuda的路徑加進去 例如:LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64

解決Ubuntu18中的pycharm不能調用tensorflow-gpu的問題

在運行就可以了

到此這篇關于解決Ubuntu18中的pycharm不能調用tensorflow-gpu的問題的文章就介紹到這了,更多相關pycharm不能調用tensorflow-gpu內容請搜索服務器之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持服務器之家!

原文鏈接:https://www.cnblogs.com/answerThe/p/12261656.html

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 欧美国产91| 亚洲成人激情在线 | 国产精品久久久乱弄 | 在线看一区二区三区 | 91成人免费看片 | 高清国产午夜精品久久久久久 | 国产成人强伦免费视频网站 | 成人精品免费在线观看 | 亚洲射逼| 免费黄网站在线播放 | 欧美激情精品久久久久久黑人 | 夜间福利视频 | 欧美视频一二三区 | av在线播放电影 | 欧美亚洲黄色 | 欧美成人免费小视频 | 国产一区日韩一区 | av在线大全 | 久久久电影电视剧免费看 | 性爱在线免费视频 | 欧美成人精品一区二区 | 国产免费大片视频 | 国产一区二区精品免费 | 久久久麻豆 | 亚洲网站免费观看 | 中文字幕在线亚洲精品 | 亚洲国产高清一区 | 亚洲精品成人av在线 | 亚洲第五色综合网 | 亚洲电影免费观看国语版 | 成年免费视频黄网站在线观看 | 成人乱人乱一区二区三区 | 国产成人在线一区 | 亚洲精品成人18久久久久 | 国产一区精品视频 | 国产成人小视频在线观看 | 99精品视频久久精品视频 | 91午夜免费视频 | 精品中文视频 | 成人午夜免费看 | 精品无码久久久久久国产 |