激情久久久_欧美视频区_成人av免费_不卡视频一二三区_欧美精品在欧美一区二区少妇_欧美一区二区三区的

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - Python圖算法實例分析

Python圖算法實例分析

2020-09-04 13:14intergret Python

這篇文章主要介紹了Python圖算法,結合實例形式詳細分析了Python數據結構與算法中的圖算法實現技巧,需要的朋友可以參考下

本文實例講述了Python圖算法。分享給大家供大家參考,具體如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#encoding=utf-8
import networkx,heapq,sys
from matplotlib import pyplot
from collections import defaultdict,OrderedDict
from numpy import array
# Data in graphdata.txt:
# a b  4
# a h  8
# b c  8
# b h  11
# h i  7
# h g  1
# g i  6
# g f  2
# c f  4
# c i  2
# c d  7
# d f  14
# d e  9
# f e  10
def Edge(): return defaultdict(Edge)
class Graph:
  def __init__(self):
    self.Link = Edge()
    self.FileName = ''
    self.Separator = ''
  def MakeLink(self,filename,separator):
    self.FileName = filename
    self.Separator = separator
    graphfile = open(filename,'r')
    for line in graphfile:
      items = line.split(separator)
      self.Link[items[0]][items[1]] = int(items[2])
      self.Link[items[1]][items[0]] = int(items[2])
    graphfile.close()
  def LocalClusteringCoefficient(self,node):
    neighbors = self.Link[node]
    if len(neighbors) <= 1: return 0
    links = 0
    for j in neighbors:
      for k in neighbors:
        if j in self.Link[k]:
          links += 0.5
    return 2.0*links/(len(neighbors)*(len(neighbors)-1))
  def AverageClusteringCoefficient(self):
    total = 0.0
    for node in self.Link.keys():
      total += self.LocalClusteringCoefficient(node)
    return total/len(self.Link.keys())
  def DeepFirstSearch(self,start):
    visitedNodes = []
    todoList = [start]
    while todoList:
      visit = todoList.pop(0)
      if visit not in visitedNodes:
        visitedNodes.append(visit)
        todoList = self.Link[visit].keys() + todoList
    return visitedNodes
  def BreadthFirstSearch(self,start):
    visitedNodes = []
    todoList = [start]
    while todoList:
      visit = todoList.pop(0)
      if visit not in visitedNodes:
        visitedNodes.append(visit)
        todoList = todoList + self.Link[visit].keys()
    return visitedNodes
  def ListAllComponent(self):
    allComponent = []
    visited = {}
    for node in self.Link.iterkeys():
      if node not in visited:
        oneComponent = self.MakeComponent(node,visited)
        allComponent.append(oneComponent)
    return allComponent
  def CheckConnection(self,node1,node2):
    return True if node2 in self.MakeComponent(node1,{}) else False
  def MakeComponent(self,node,visited):
    visited[node] = True
    component = [node]
    for neighbor in self.Link[node]:
      if neighbor not in visited:
        component += self.MakeComponent(neighbor,visited)
    return component
  def MinimumSpanningTree_Kruskal(self,start):
    graphEdges = [line.strip('\n').split(self.Separator) for line in open(self.FileName,'r')]
    nodeSet = {}
    for idx,node in enumerate(self.MakeComponent(start,{})):
      nodeSet[node] = idx
    edgeNumber = 0; totalEdgeNumber = len(nodeSet)-1
    for oneEdge in sorted(graphEdges,key=lambda x:int(x[2]),reverse=False):
      if edgeNumber == totalEdgeNumber: break
      nodeA,nodeB,cost = oneEdge
      if nodeA in nodeSet and nodeSet[nodeA] != nodeSet[nodeB]:
        nodeBSet = nodeSet[nodeB]
        for node in nodeSet.keys():
          if nodeSet[node] == nodeBSet:
            nodeSet[node] = nodeSet[nodeA]
        print nodeA,nodeB,cost
        edgeNumber += 1
  def MinimumSpanningTree_Prim(self,start):
    expandNode = set(self.MakeComponent(start,{}))
    distFromTreeSoFar = {}.fromkeys(expandNode,sys.maxint); distFromTreeSoFar[start] = 0
    linkToNode = {}.fromkeys(expandNode,'');linkToNode[start] = start
    while expandNode:
      # Find the closest dist node
      closestNode = ''; shortestdistance = sys.maxint;
      for node,dist in distFromTreeSoFar.iteritems():
        if node in expandNode and dist < shortestdistance:
          closestNode,shortestdistance = node,dist
      expandNode.remove(closestNode)
      print linkToNode[closestNode],closestNode,shortestdistance
      for neighbor in self.Link[closestNode].iterkeys():
        recomputedist = self.Link[closestNode][neighbor]
        if recomputedist < distFromTreeSoFar[neighbor]:
          distFromTreeSoFar[neighbor] = recomputedist
          linkToNode[neighbor] = closestNode
  def ShortestPathOne2One(self,start,end):
    pathFromStart = {}
    pathFromStart[start] = [start]
    todoList = [start]
    while todoList:
      current = todoList.pop(0)
      for neighbor in self.Link[current]:
        if neighbor not in pathFromStart:
          pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
          if neighbor == end:
            return pathFromStart[end]
          todoList.append(neighbor)
    return []
  def Centrality(self,node):
    path2All = self.ShortestPathOne2All(node)
    # The average of the distances of all the reachable nodes
    return float(sum([len(path)-1 for path in path2All.itervalues()]))/len(path2All)
  def SingleSourceShortestPath_Dijkstra(self,start):
    expandNode = set(self.MakeComponent(start,{}))
    distFromSourceSoFar = {}.fromkeys(expandNode,sys.maxint); distFromSourceSoFar[start] = 0
    while expandNode:
      # Find the closest dist node
      closestNode = ''; shortestdistance = sys.maxint;
      for node,dist in distFromSourceSoFar.iteritems():
        if node in expandNode and dist < shortestdistance:
          closestNode,shortestdistance = node,dist
      expandNode.remove(closestNode)
      for neighbor in self.Link[closestNode].iterkeys():
        recomputedist = distFromSourceSoFar[closestNode] + self.Link[closestNode][neighbor]
        if recomputedist < distFromSourceSoFar[neighbor]:
          distFromSourceSoFar[neighbor] = recomputedist
    for node in distFromSourceSoFar:
      print start,node,distFromSourceSoFar[node]
  def AllpairsShortestPaths_MatrixMultiplication(self,start):
    nodeIdx = {}; idxNode = {};
    for idx,node in enumerate(self.MakeComponent(start,{})):
      nodeIdx[node] = idx; idxNode[idx] = node
    matrixSize = len(nodeIdx)
    MaxInt = 1000
    nodeMatrix = array([[MaxInt]*matrixSize]*matrixSize)
    for node in nodeIdx.iterkeys():
      nodeMatrix[nodeIdx[node]][nodeIdx[node]] = 0
    for line in open(self.FileName,'r'):
      nodeA,nodeB,cost = line.strip('\n').split(self.Separator)
      if nodeA in nodeIdx:
        nodeMatrix[nodeIdx[nodeA]][nodeIdx[nodeB]] = int(cost)
        nodeMatrix[nodeIdx[nodeB]][nodeIdx[nodeA]] = int(cost)
    result = array([[0]*matrixSize]*matrixSize)
    for i in xrange(matrixSize):
      for j in xrange(matrixSize):
        result[i][j] = nodeMatrix[i][j]
    for itertime in xrange(2,matrixSize):
      for i in xrange(matrixSize):
        for j in xrange(matrixSize):
          if i==j:
            result[i][j] = 0
            continue
          result[i][j] = MaxInt
          for k in xrange(matrixSize):
            result[i][j] = min(result[i][j],result[i][k]+nodeMatrix[k][j])
    for i in xrange(matrixSize):
      for j in xrange(matrixSize):
        if result[i][j] != MaxInt:
          print idxNode[i],idxNode[j],result[i][j]
  def ShortestPathOne2All(self,start):
    pathFromStart = {}
    pathFromStart[start] = [start]
    todoList = [start]
    while todoList:
      current = todoList.pop(0)
      for neighbor in self.Link[current]:
        if neighbor not in pathFromStart:
          pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
          todoList.append(neighbor)
    return pathFromStart
  def NDegreeNode(self,start,n):
    pathFromStart = {}
    pathFromStart[start] = [start]
    pathLenFromStart = {}
    pathLenFromStart[start] = 0
    todoList = [start]
    while todoList:
      current = todoList.pop(0)
      for neighbor in self.Link[current]:
        if neighbor not in pathFromStart:
          pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
          pathLenFromStart[neighbor] = pathLenFromStart[current] + 1
          if pathLenFromStart[neighbor] <= n+1:
            todoList.append(neighbor)
    for node in pathFromStart.keys():
      if len(pathFromStart[node]) != n+1:
        del pathFromStart[node]
    return pathFromStart
  def Draw(self):
    G = networkx.Graph()
    nodes = self.Link.keys()
    edges = [(node,neighbor) for node in nodes for neighbor in self.Link[node]]
    G.add_edges_from(edges)
    networkx.draw(G)
    pyplot.show()
if __name__=='__main__':
  separator = '\t'
  filename = 'C:\\Users\\Administrator\\Desktop\\graphdata.txt'
  resultfilename = 'C:\\Users\\Administrator\\Desktop\\result.txt'
  myGraph = Graph()
  myGraph.MakeLink(filename,separator)
  print 'LocalClusteringCoefficient',myGraph.LocalClusteringCoefficient('a')
  print 'AverageClusteringCoefficient',myGraph.AverageClusteringCoefficient()
  print 'DeepFirstSearch',myGraph.DeepFirstSearch('a')
  print 'BreadthFirstSearch',myGraph.BreadthFirstSearch('a')
  print 'ShortestPathOne2One',myGraph.ShortestPathOne2One('a','d')
  print 'ShortestPathOne2All',myGraph.ShortestPathOne2All('a')
  print 'NDegreeNode',myGraph.NDegreeNode('a',3).keys()
  print 'ListAllComponent',myGraph.ListAllComponent()
  print 'CheckConnection',myGraph.CheckConnection('a','f')
  print 'Centrality',myGraph.Centrality('c')
  myGraph.MinimumSpanningTree_Kruskal('a')
  myGraph.AllpairsShortestPaths_MatrixMultiplication('a')
  myGraph.MinimumSpanningTree_Prim('a')
  myGraph.SingleSourceShortestPath_Dijkstra('a')
  # myGraph.Draw()

希望本文所述對大家Python程序設計有所幫助。

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 91视频官网| 羞羞视频.www在线观看 | 日韩一级毛毛片 | 桥本有菜免费av一区二区三区 | 成年人视频在线免费观看 | av观看国产 | 久久精品一区二区三区四区五区 | 国产精品视频免费网站 | 中国洗澡偷拍在线播放 | 国产成人自拍小视频 | 亚洲综合视频网站 | 噜噜在线视频 | 久久久久久久久久亚洲 | 亚洲精品久久久久久下一站 | 欧美高清一级片 | 91视频精选 | 男女一边摸一边做羞羞视频免费 | 欧美a级大胆视频 | 狠狠操天天射 | 亚洲欧美一区二区三区在线观看 | 最新av网址在线观看 | 末成年女av片一区二区 | 国人精品视频在线观看 | 中国大陆高清aⅴ毛片 | 久久久久亚洲精品 | 国产精品成人亚洲一区二区 | 羞羞网站在线观看入口免费 | 精品一区二区三区电影 | 在线观看免费视频麻豆 | 国产91久久精品一区二区 | av国产免费 | 一区二区久久精品66国产精品 | 羞羞的视频免费在线观看 | 久久久久久久久久久亚洲 | free国产hd老熟bbw | 91精品视频网址 | 91看片淫黄大片欧美看国产片 | 久草手机在线观看视频 | 女人解衣喂奶电影 | 国产精品一区在线看 | 成年免费看 |