舉例說明
TensorFlow中的變量一般就是模型的參數。當模型復雜的時候共享變量會無比復雜。
官網給了一個case,當創建兩層卷積的過濾器時,每輸入一次圖片就會創建一次過濾器對應的變量,但是我們希望所有圖片都共享同一過濾器變量,一共有4個變量:conv1_weights,conv1_biases,conv2_weights, and conv2_biases。
通常的做法是將這些變量設置為全局變量。但是存在的問題是打破封裝性,這些變量必須文檔化被其他代碼文件引用,一旦代碼變化,調用方也可能需要變化。
還有一種保證封裝性的方式是將模型封裝成類。
不過TensorFlow提供了Variable Scope 這種獨特的機制來共享變量。這個機制涉及兩個主要函數:
1
2
|
tf.get_variable(<name>, <shape>, <initializer>) 創建或返回給定名稱的變量 tf.variable_scope(<scope_name>) 管理傳給get_variable()的變量名稱的作用域 |
在下面的代碼中,通過tf.get_variable()創建了名稱分別為weights和biases的兩個變量。
1
2
3
4
5
6
7
8
9
10
|
def conv_relu( input , kernel_shape, bias_shape): # Create variable named "weights". weights = tf.get_variable( "weights" , kernel_shape, initializer = tf.random_normal_initializer()) # Create variable named "biases". biases = tf.get_variable( "biases" , bias_shape, initializer = tf.constant_initializer( 0.0 )) conv = tf.nn.conv2d( input , weights, strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' ) return tf.nn.relu(conv + biases) |
但是我們需要兩個卷積層,這時可以通過tf.variable_scope()指定作用域進行區分,如with tf.variable_scope("conv1")這行代碼指定了第一個卷積層作用域為conv1,
在這個作用域下有兩個變量weights和biases。
1
2
3
4
5
6
7
|
def my_image_filter(input_images): with tf.variable_scope( "conv1" ): # Variables created here will be named "conv1/weights", "conv1/biases". relu1 = conv_relu(input_images, [ 5 , 5 , 32 , 32 ], [ 32 ]) with tf.variable_scope( "conv2" ): # Variables created here will be named "conv2/weights", "conv2/biases". return conv_relu(relu1, [ 5 , 5 , 32 , 32 ], [ 32 ]) |
最后在image_filters這個作用域重復使用第一張圖片輸入時創建的變量,調用函數reuse_variables(),代碼如下:
1
2
3
4
|
with tf.variable_scope( "image_filters" ) as scope: result1 = my_image_filter(image1) scope.reuse_variables() result2 = my_image_filter(image2) |
tf.get_variable()工作機制
tf.get_variable()工作機制是這樣的:
當tf.get_variable_scope().reuse == False,調用該函數會創建新的變量
1
2
3
|
with tf.variable_scope( "foo" ): v = tf.get_variable( "v" , [ 1 ]) assert v.name = = "foo/v:0" |
當tf.get_variable_scope().reuse == True,調用該函數會重用已經創建的變量
1
2
3
4
5
|
with tf.variable_scope( "foo" ): v = tf.get_variable( "v" , [ 1 ]) with tf.variable_scope( "foo" , reuse = True ): v1 = tf.get_variable( "v" , [ 1 ]) assert v1 is v |
變量都是通過作用域/變量名來標識,后面會看到作用域可以像文件路徑一樣嵌套。
tf.variable_scope理解
tf.variable_scope()用來指定變量的作用域,作為變量名的前綴,支持嵌套,如下:
1
2
3
4
|
with tf.variable_scope( "foo" ): with tf.variable_scope( "bar" ): v = tf.get_variable( "v" , [ 1 ]) assert v.name = = "foo/bar/v:0" |
當前環境的作用域可以通過函數tf.get_variable_scope()獲取,并且reuse標志可以通過調用reuse_variables()設置為True,這個非常有用,如下
1
2
3
4
5
|
with tf.variable_scope( "foo" ): v = tf.get_variable( "v" , [ 1 ]) tf.get_variable_scope().reuse_variables() v1 = tf.get_variable( "v" , [ 1 ]) assert v1 is v |
作用域中的resuse默認是False,調用函數reuse_variables()可設置為True,一旦設置為True,就不能返回到False,并且該作用域的子空間reuse都是True。如果不想重用變量,那么可以退回到上層作用域,相當于exit當前作用域,如
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
with tf.variable_scope( "root" ): # At start, the scope is not reusing. assert tf.get_variable_scope().reuse = = False with tf.variable_scope( "foo" ): # Opened a sub-scope, still not reusing. assert tf.get_variable_scope().reuse = = False with tf.variable_scope( "foo" , reuse = True ): # Explicitly opened a reusing scope. assert tf.get_variable_scope().reuse = = True with tf.variable_scope( "bar" ): # Now sub-scope inherits the reuse flag. assert tf.get_variable_scope().reuse = = True # Exited the reusing scope, back to a non-reusing one. assert tf.get_variable_scope().reuse = = False |
一個作用域可以作為另一個新的作用域的參數,如:
1
2
3
4
5
6
7
8
9
|
with tf.variable_scope( "foo" ) as foo_scope: v = tf.get_variable( "v" , [ 1 ]) with tf.variable_scope(foo_scope): w = tf.get_variable( "w" , [ 1 ]) with tf.variable_scope(foo_scope, reuse = True ): v1 = tf.get_variable( "v" , [ 1 ]) w1 = tf.get_variable( "w" , [ 1 ]) assert v1 is v assert w1 is w |
不管作用域如何嵌套,當使用with tf.variable_scope()打開一個已經存在的作用域時,就會跳轉到這個作用域。
1
2
3
4
5
6
7
|
with tf.variable_scope( "foo" ) as foo_scope: assert foo_scope.name = = "foo" with tf.variable_scope( "bar" ): with tf.variable_scope( "baz" ) as other_scope: assert other_scope.name = = "bar/baz" with tf.variable_scope(foo_scope) as foo_scope2: assert foo_scope2.name = = "foo" # Not changed. |
variable scope的Initializers可以創遞給子空間和tf.get_variable()函數,除非中間有函數改變,否則不變。
1
2
3
4
5
6
7
8
9
10
11
|
with tf.variable_scope( "foo" , initializer = tf.constant_initializer( 0.4 )): v = tf.get_variable( "v" , [ 1 ]) assert v. eval () = = 0.4 # Default initializer as set above. w = tf.get_variable( "w" , [ 1 ], initializer = tf.constant_initializer( 0.3 )): assert w. eval () = = 0.3 # Specific initializer overrides the default. with tf.variable_scope( "bar" ): v = tf.get_variable( "v" , [ 1 ]) assert v. eval () = = 0.4 # Inherited default initializer. with tf.variable_scope( "baz" , initializer = tf.constant_initializer( 0.2 )): v = tf.get_variable( "v" , [ 1 ]) assert v. eval () = = 0.2 # Changed default initializer. |
算子(ops)會受變量作用域(variable scope)影響,相當于隱式地打開了同名的名稱作用域(name scope),如+這個算子的名稱為foo/add
1
2
3
|
with tf.variable_scope( "foo" ): x = 1.0 + tf.get_variable( "v" , [ 1 ]) assert x.op.name = = "foo/add" |
除了變量作用域(variable scope),還可以顯式打開名稱作用域(name scope),名稱作用域僅僅影響算子的名稱,不影響變量的名稱。另外如果tf.variable_scope()傳入字符參數,創建變量作用域的同時會隱式創建同名的名稱作用域。如下面的例子,變量v的作用域是foo,而算子x的算子變為foo/bar,因為有隱式創建名稱作用域foo
1
2
3
4
5
6
|
with tf.variable_scope( "foo" ): with tf.name_scope( "bar" ): v = tf.get_variable( "v" , [ 1 ]) x = 1.0 + v assert v.name = = "foo/v:0" assert x.op.name = = "foo/bar/add" |
注意: 如果tf.variable_scope()傳入的不是字符串而是scope對象,則不會隱式創建同名的名稱作用域。
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持服務器之家。
原文鏈接:https://www.cnblogs.com/MY0213/p/9208503.html