激情久久久_欧美视频区_成人av免费_不卡视频一二三区_欧美精品在欧美一区二区少妇_欧美一区二区三区的

腳本之家,腳本語言編程技術及教程分享平臺!
分類導航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服務器之家 - 腳本之家 - Python - tensorflow estimator 使用hook實現(xiàn)finetune方式

tensorflow estimator 使用hook實現(xiàn)finetune方式

2020-04-05 12:42andylei777 Python

今天小編就為大家分享一篇tensorflow estimator 使用hook實現(xiàn)finetune方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

為了實現(xiàn)finetune有如下兩種解決方案:

model_fn里面定義好模型之后直接賦值

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
def model_fn(features, labels, mode, params):
# .....
# finetune
if params.checkpoint_path and (not tf.train.latest_checkpoint(params.model_dir)):
checkpoint_path = None
if tf.gfile.IsDirectory(params.checkpoint_path):
 checkpoint_path = tf.train.latest_checkpoint(params.checkpoint_path)
else:
 checkpoint_path = params.checkpoint_path
 
tf.train.init_from_checkpoint(
 ckpt_dir_or_file=checkpoint_path,
 assignment_map={params.checkpoint_scope: params.checkpoint_scope} # 'OptimizeLoss/':'OptimizeLoss/'
)

使用鉤子 hooks。

可以在定義tf.contrib.learn.Experiment的時候通過train_monitors參數(shù)指定

?
1
2
3
4
5
6
7
8
9
10
11
# Define the experiment
experiment = tf.contrib.learn.Experiment(
estimator=estimator, # Estimator
train_input_fn=train_input_fn, # First-class function
eval_input_fn=eval_input_fn, # First-class function
train_steps=params.train_steps, # Minibatch steps
min_eval_frequency=params.eval_min_frequency, # Eval frequency
# train_monitors=[], # Hooks for training
# eval_hooks=[eval_input_hook], # Hooks for evaluation
eval_steps=params.eval_steps # Use evaluation feeder until its empty
)

也可以在定義tf.estimator.EstimatorSpec 的時候通過training_chief_hooks參數(shù)指定。

不過個人覺得最好還是在estimator中定義,讓experiment只專注于控制實驗的模式(訓練次數(shù),驗證次數(shù)等等)。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
def model_fn(features, labels, mode, params):
 
 # ....
 
 return tf.estimator.EstimatorSpec(
 mode=mode,
 predictions=predictions,
 loss=loss,
 train_op=train_op,
 eval_metric_ops=eval_metric_ops,
 # scaffold=get_scaffold(),
 # training_chief_hooks=None
 )

這里順便解釋以下tf.estimator.EstimatorSpec對像的作用。該對象描述來一個模型的方方面面。包括:

當前的模式:

mode: A ModeKeys. Specifies if this is training, evaluation or prediction.

計算圖

predictions: Predictions Tensor or dict of Tensor.

loss: Training loss Tensor. Must be either scalar, or with shape [1].

train_op: Op for the training step.

eval_metric_ops: Dict of metric results keyed by name. The values of the dict are the results of calling a metric function, namely a (metric_tensor, update_op) tuple. metric_tensor should be evaluated without any impact on state (typically is a pure computation results based on variables.). For example, it should not trigger the update_op or requires any input fetching.

導出策略

export_outputs: Describes the output signatures to be exported to

SavedModel and used during serving. A dict {name: output} where:

name: An arbitrary name for this output.

output: an ExportOutput object such as ClassificationOutput, RegressionOutput, or PredictOutput. Single-headed models only need to specify one entry in this dictionary. Multi-headed models should specify one entry for each head, one of which must be named using signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY.

chief鉤子 訓練時的模型保存策略鉤子CheckpointSaverHook, 模型恢復等

training_chief_hooks: Iterable of tf.train.SessionRunHook objects to run on the chief worker during training.

worker鉤子 訓練時的監(jiān)控策略鉤子如: NanTensorHook LoggingTensorHook 等

training_hooks: Iterable of tf.train.SessionRunHook objects to run on all workers during training.

指定初始化和saver

scaffold: A tf.train.Scaffold object that can be used to set initialization, saver, and more to be used in training.

evaluation鉤子

evaluation_hooks: Iterable of tf.train.SessionRunHook objects to run during evaluation.

自定義的鉤子如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
class RestoreCheckpointHook(tf.train.SessionRunHook):
 def __init__(self,
   checkpoint_path,
   exclude_scope_patterns,
   include_scope_patterns
   ):
 tf.logging.info("Create RestoreCheckpointHook.")
 #super(IteratorInitializerHook, self).__init__()
 self.checkpoint_path = checkpoint_path
 
 self.exclude_scope_patterns = None if (not exclude_scope_patterns) else exclude_scope_patterns.split(',')
 self.include_scope_patterns = None if (not include_scope_patterns) else include_scope_patterns.split(',')
 
 
 def begin(self):
 # You can add ops to the graph here.
 print('Before starting the session.')
 
 # 1. Create saver
 
 #exclusions = []
 #if self.checkpoint_exclude_scopes:
 # exclusions = [scope.strip()
 #  for scope in self.checkpoint_exclude_scopes.split(',')]
 #
 #variables_to_restore = []
 #for var in slim.get_model_variables(): #tf.global_variables():
 # excluded = False
 # for exclusion in exclusions:
 # if var.op.name.startswith(exclusion):
 # excluded = True
 # break
 # if not excluded:
 # variables_to_restore.append(var)
 #inclusions
 #[var for var in tf.trainable_variables() if var.op.name.startswith('InceptionResnetV1')]
 
 variables_to_restore = tf.contrib.framework.filter_variables(
  slim.get_model_variables(),
  include_patterns=self.include_scope_patterns, # ['Conv'],
  exclude_patterns=self.exclude_scope_patterns, # ['biases', 'Logits'],
 
  # If True (default), performs re.search to find matches
  # (i.e. pattern can match any substring of the variable name).
  # If False, performs re.match (i.e. regexp should match from the beginning of the variable name).
  reg_search = True
 )
 self.saver = tf.train.Saver(variables_to_restore)
 
 
 def after_create_session(self, session, coord):
 # When this is called, the graph is finalized and
 # ops can no longer be added to the graph.
 
 print('Session created.')
 
 tf.logging.info('Fine-tuning from %s' % self.checkpoint_path)
 self.saver.restore(session, os.path.expanduser(self.checkpoint_path))
 tf.logging.info('End fineturn from %s' % self.checkpoint_path)
 
 def before_run(self, run_context):
 #print('Before calling session.run().')
 return None #SessionRunArgs(self.your_tensor)
 
 def after_run(self, run_context, run_values):
 #print('Done running one step. The value of my tensor: %s', run_values.results)
 #if you-need-to-stop-loop:
 # run_context.request_stop()
 pass
 
 
 def end(self, session):
 #print('Done with the session.')
 pass

以上這篇tensorflow estimator 使用hook實現(xiàn)finetune方式就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持服務器之家。

原文鏈接:https://blog.csdn.net/andylei777/article/details/79074757

延伸 · 閱讀

精彩推薦
主站蜘蛛池模板: 久久久久久久不卡 | 免费观看高清视频网站 | 国产二区三区在线播放 | 成人做爽爽爽爽免费国产软件 | 久草导航 | 超久久| 未成年人在线观看 | 日日操夜夜操视频 | 亚洲国产综合在线观看 | 国产午夜免费 | 色中色在线播放 | 欧美性生交zzzzzxxxxx | 欧美一级黄色免费 | 欧美一级免费视频 | 中文字幕精品在线视频 | 免费永久看羞羞片网站入口 | av手机在线免费播放 | 草草久久久 | 久久福利剧场 | lutube成人福利在线观看污 | 久久精品亚洲精品国产欧美kt∨ | 精品国产一区二区三区免费 | 色综合久久久久久久久久 | 免费一区二区三区 | 欧美一级一区二区三区 | 97干在线| 黑人三级毛片 | 性少妇videosexfreexxx片 | 在线观看免费污视频 | jizzjizz中国人少妇中文 | 免费毛片随便看 | 小情侣嗯啊哦视频www | 久久人人av | 黄色片在线观看网站 | 狼人狠狠干| 最近日本电影hd免费观看 | 羞羞网站视频 | 55夜色66夜色国产精品视频 | 99热草 | 99久久久久国产精品免费 | 亚洲精品一区二区三区大胸 |