Object是所有類的父類,也就是說(shuō)java中所有的類都是直接或者間接繼承自O(shè)bject類。比如你隨便創(chuàng)建一個(gè)classA,雖然沒(méi)有明說(shuō),但默認(rèn)是extendsObject的。
后面的三個(gè)點(diǎn)"..."表示可以接受若干不確定數(shù)量的參數(shù)。老的寫法是Objectargs[]這樣,但新版本的java中推薦使用...來(lái)表示。例如
publicvoidgetSomething(String...strings)(){}
object是java中所有類的父類,也就是說(shuō)所有的類,不管是自己創(chuàng)建的類還是系統(tǒng)中的類都繼承自object類,也就是說(shuō)所有的類在任何場(chǎng)合都可以代替object類,根據(jù)里氏替換原則,子類在任何場(chǎng)合都可以代替其父類,而父類卻不一定能代替其子類,java中常說(shuō)的萬(wàn)物皆對(duì)象說(shuō)的其實(shí)就是這個(gè)道理!object類體現(xiàn)了oop思想中的多態(tài),繼承,封裝,抽象四大特性!
object類是所有類的基類,不是數(shù)據(jù)類型。這個(gè)你可以查詢jdk文檔了解,所有類都繼承自O(shè)bject。
Object...objects這種參數(shù)定義是在不確定方法參數(shù)的情況下的一種多態(tài)表現(xiàn)形式。即這個(gè)方法可以傳遞多個(gè)參數(shù),這個(gè)參數(shù)的個(gè)數(shù)是不確定的。這樣你在方法體中需要相應(yīng)的做些處理。因?yàn)镺bject是基類,所以使用Object...objects這樣的參數(shù)形式,允許一切繼承自O(shè)bject的對(duì)象作為參數(shù)。這種方法在實(shí)際中應(yīng)該還是比較少用的。
Object[]obj這樣的形式,就是一個(gè)Object數(shù)組構(gòu)成的參數(shù)形式。說(shuō)明這個(gè)方法的參數(shù)是固定的,是一個(gè)Object數(shù)組,至于這個(gè)數(shù)組中存儲(chǔ)的元素,可以是繼承自O(shè)bject的所有類的對(duì)象。
這些基礎(chǔ)東西建議你多看幾遍"Thinkinjava"
Java的Object是所有其他類的父類,從繼承的層次來(lái)看它就是最頂層根,所以它也是唯一一個(gè)沒(méi)有父類的類。它包含了對(duì)象常用的一些方法,比如getClass、hashCode、equals、clone、toString、notify、wait等常用方法。所以其他類繼承了Object后就可以不用重復(fù)實(shí)現(xiàn)這些方法。這些方法大多數(shù)是native方法,下面具體分析。
主要的代碼如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
public class Object { private static native void registerNatives(); static { registerNatives(); } public final native Class<?> getClass(); public native int hashCode(); public Boolean equals(Object obj) { return ( this == obj); } protected native Object clone() throws CloneNotSupportedException; public String toString() { return getClass().getName() + "@" + Integer.toHexString(hashCode()); } public final native void notify(); public final native void notifyAll(); public final native void wait( long timeout) throws InterruptedException; public final void wait( long timeout, int nanos) throws InterruptedException { if (timeout < 0 ) { throw new IllegalArgumentException( "timeout value is negative" ); } if (nanos < 0 || nanos > 999999 ) { throw new IllegalArgumentException( "nanosecond timeout value out of range" ); } if (nanos > 0 ) { timeout++; } wait(timeout); } public final void wait() throws InterruptedException { wait( 0 ); } protected void finalize() throws Throwable { } } |
registerNatives方法
由于registerNatives方法被static塊修飾,所以在加載Object類時(shí)就會(huì)執(zhí)行該方法,對(duì)應(yīng)的本地方法為Java_java_lang_Object_registerNatives,如下,
1
2
3
4
5
6
|
JNIEXPORT void JNICALL Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls) { (*env)->RegisterNatives(env, cls, methods, sizeof(methods)/sizeof(methods[ 0 ])); } |
可以看到它間接調(diào)用了JNINativeInterface_結(jié)構(gòu)體的方法,簡(jiǎn)單可以看成是這樣:它干的事大概就是將Java層的方法名和本地函數(shù)對(duì)應(yīng)起來(lái),方便執(zhí)行引擎在執(zhí)行字節(jié)碼時(shí)根據(jù)這些對(duì)應(yīng)關(guān)系表來(lái)調(diào)用C/C++函數(shù),如下面,將這些方法進(jìn)行注冊(cè),執(zhí)行引擎執(zhí)行到hashCode方法時(shí)就可以通過(guò)關(guān)系表來(lái)查找到JVM的JVM_IHashCode函數(shù),其中()I還可以得知Java層上的類型應(yīng)該轉(zhuǎn)為int類型。這個(gè)映射其實(shí)就可以看成將字符串映射到函數(shù)指針。
1
2
3
4
5
6
7
|
static JNINativeMethod methods[] = { { "hashCode" , "()I" , ( void *)&JVM_IHashCode}, { "wait" , "(J)V" , ( void *)&JVM_MonitorWait}, { "notify" , "()V" , ( void *)&JVM_MonitorNotify}, { "notifyAll" , "()V" , ( void *)&JVM_MonitorNotifyAll}, { "clone" , "()Ljava/lang/Object;" , ( void *)&JVM_Clone}, }; |
getClass方法
getClass方法也是個(gè)本地方法,對(duì)應(yīng)的本地方法為Java_java_lang_Object_getClass,如下:
1
2
3
4
5
6
7
8
9
10
|
JNIEXPORT jclass JNICALL Java_java_lang_Object_getClass(JNIEnv *env, jobject this ) { if ( this == NULL) { JNU_ThrowNullPointerException(env, NULL); return 0 ; } else { return (*env)->GetObjectClass(env, this ); } } |
所以這里主要就是看GetObjectClass函數(shù)了,Java層的Class在C++層與之對(duì)應(yīng)的則是klassOop,所以關(guān)于類的元數(shù)據(jù)和方法信息可以通過(guò)它獲得。
1
2
3
4
5
6
7
8
9
|
JNI_ENTRY(jclass, jni_GetObjectClass(JNIEnv *env, jobject obj)) JNIWrapper( "GetObjectClass" ); DTRACE_PROBE2(hotspot_jni, GetObjectClass__entry, env, obj); klassOop k = JNIHandles::resolve_non_null(obj)->klass(); jclass ret = (jclass) JNIHandles::make_local(env, Klass::cast(k)->java_mirror()); DTRACE_PROBE1(hotspot_jni, GetObjectClass__return, ret); return ret; JNI_END |
hashCode方法
由前面registerNatives方法將幾個(gè)本地方法注冊(cè)可知,hashCode方法對(duì)應(yīng)的函數(shù)為JVM_IHashCode,即
1
2
3
4
5
|
JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle)) JVMWrapper( "JVM_IHashCode" ); // as implemented in the classic virtual machine; return 0 if object is NULL return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ; JVM_END |
對(duì)于hashcode生成的邏輯由synchronizer.cpp的get_next_hash函數(shù)決定,實(shí)現(xiàn)比較復(fù)雜,根據(jù)hashcode的不同值有不同的生成策略,最后使用一個(gè)hash掩碼處理。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
static inline intptr_t get_next_hash(Thread * Self, oop obj) { intptr_t value = 0 ; if (hashCode == 0 ) { value = os::random() ; } else if (hashCode == 1 ) { intptr_t addrBits = intptr_t(obj) >> 3 ; value = addrBits ^ (addrBits >> 5 ) ^ GVars.stwRandom ; } else if (hashCode == 2 ) { value = 1 ; // for sensitivity testing } else if (hashCode == 3 ) { value = ++GVars.hcSequence ; } else if (hashCode == 4 ) { value = intptr_t(obj) ; } else { unsigned t = Self->_hashStateX ; t ^= (t << 11 ) ; Self->_hashStateX = Self->_hashStateY ; Self->_hashStateY = Self->_hashStateZ ; Self->_hashStateZ = Self->_hashStateW ; unsigned v = Self->_hashStateW ; v = (v ^ (v >> 19 )) ^ (t ^ (t >> 8 )) ; Self->_hashStateW = v ; value = v ; } value &= markOopDesc::hash_mask; if (value == 0 ) value = 0xBAD ; assert (value != markOopDesc::no_hash, "invariant" ) ; TEVENT (hashCode: GENERATE) ; return value; } |
equals方法
這是一個(gè)非本地方法,判斷邏輯也十分簡(jiǎn)單,直接==比較。
clone方法
由本地方法表知道clone方法對(duì)應(yīng)的本地函數(shù)為JVM_Clone,clone方法主要實(shí)現(xiàn)對(duì)象的克隆功能,根據(jù)該對(duì)象生成一個(gè)相同的新對(duì)象(我們常見(jiàn)的類的對(duì)象的屬性如果是原始類型則會(huì)克隆值,但如果是對(duì)象則會(huì)克隆對(duì)象的地址)。Java的類要實(shí)現(xiàn)克隆則需要實(shí)現(xiàn)Cloneable接口,if (!klass->is_cloneable())這里會(huì)校驗(yàn)是否有實(shí)現(xiàn)該接口。然后判斷是否是數(shù)組分兩種情況分配內(nèi)存空間,新對(duì)象為new_obj,接著對(duì)new_obj進(jìn)行copy及C++層數(shù)據(jù)結(jié)構(gòu)的設(shè)置。最后再轉(zhuǎn)成jobject類型方便轉(zhuǎn)成Java層的Object類型。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
JVM_ENTRY(jobject, JVM_Clone(JNIEnv* env, jobject handle)) JVMWrapper( "JVM_Clone" ); Handle obj(THREAD, JNIHandles::resolve_non_null(handle)); const KlassHandle klass (THREAD, obj->klass()); JvmtiVMObjectAllocEventCollector oam; if (!klass->is_cloneable()) { ResourceMark rm(THREAD); THROW_MSG_0(vmSymbols::java_lang_CloneNotSupportedException(), klass->external_name()); } const int size = obj->size(); oop new_obj = NULL; if (obj->is_javaArray()) { const int length = ((arrayOop)obj())->length(); new_obj = CollectedHeap::array_allocate(klass, size, length, CHECK_NULL); } else { new_obj = CollectedHeap::obj_allocate(klass, size, CHECK_NULL); } Copy::conjoint_jlongs_atomic((jlong*)obj(), (jlong*)new_obj, (size_t)align_object_size(size) / HeapWordsPerlong); new_obj->init_mark(); BarrierSet* bs = Universe::heap()->barrier_set(); assert (bs->has_write_region_opt(), "Barrier set does not have write_region" ); bs->write_region(MemRegion((HeapWord*)new_obj, size)); if (klass->has_finalizer()) { assert (obj->is_instance(), "should be instanceOop" ); new_obj = instanceKlass::register_finalizer(instanceOop(new_obj), CHECK_NULL); } return JNIHandles::make_local(env, oop(new_obj)); JVM_END |
toString方法
邏輯是獲取class名稱加上@再加上十六進(jìn)制的hashCode。
notify方法
此方法用來(lái)喚醒線程,final修飾說(shuō)明不可重寫。與之對(duì)應(yīng)的本地方法為JVM_MonitorNotify,ObjectSynchronizer::notify最終會(huì)調(diào)用ObjectMonitor::notify(TRAPS),這個(gè)過(guò)程是ObjectSynchronizer會(huì)嘗試當(dāng)前線程獲取freeObjectMonitor對(duì)象,不成功則嘗試從全局中獲取。
1
2
3
4
5
6
|
JVM_ENTRY( void , JVM_MonitorNotify(JNIEnv* env, jobject handle)) JVMWrapper( "JVM_MonitorNotify" ); Handle obj(THREAD, JNIHandles::resolve_non_null(handle)); assert (obj->is_instance() || obj->is_array(), "JVM_MonitorNotify must apply to an object" ); ObjectSynchronizer::notify(obj, CHECK); JVM_END |
ObjectMonitor對(duì)象包含一個(gè)_WaitSet隊(duì)列對(duì)象,此對(duì)象保存著所有處于wait狀態(tài)的線程,用ObjectWaiter對(duì)象表示。notify要做的事是先獲取_WaitSet隊(duì)列鎖,再取出_WaitSet隊(duì)列中第一個(gè)ObjectWaiter對(duì)象,再根據(jù)不同策略處理該對(duì)象,比如把它加入到_EntryList隊(duì)列中。然后再釋放_(tái)WaitSet隊(duì)列鎖。它并沒(méi)有釋放synchronized對(duì)應(yīng)的鎖,所以鎖只能等到synchronized同步塊結(jié)束時(shí)才釋放。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
void ObjectMonitor::notify(TRAPS) { CHECK_OWNER(); if (_WaitSet == NULL) { TEVENT (Empty-Notify) ; return ; } DTRACE_MONITOR_PROBE(notify, this , object(), THREAD); int Policy = Knob_MoveNotifyee ; Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify" ) ; ObjectWaiter * iterator = DequeueWaiter() ; if (iterator != NULL) { TEVENT (Notify1 - Transfer) ; guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant" ) ; guarantee (iterator->_notified == 0 , "invariant" ) ; if (Policy != 4 ) { iterator->TState = ObjectWaiter::TS_ENTER ; } iterator->_notified = 1 ; ObjectWaiter * List = _EntryList ; if (List != NULL) { assert (List->_prev == NULL, "invariant" ) ; assert (List->TState == ObjectWaiter::TS_ENTER, "invariant" ) ; assert (List != iterator, "invariant" ) ; } if (Policy == 0 ) { // prepend to EntryList if (List == NULL) { iterator->_next = iterator->_prev = NULL ; _EntryList = iterator ; } else { List->_prev = iterator ; iterator->_next = List ; iterator->_prev = NULL ; _EntryList = iterator ; } } else if (Policy == 1 ) { // append to EntryList if (List == NULL) { iterator->_next = iterator->_prev = NULL ; _EntryList = iterator ; } else { // CONSIDER: finding the tail currently requires a linear-time walk of // the EntryList. We can make tail access constant-time by converting to // a CDLL instead of using our current DLL. ObjectWaiter * Tail ; for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ; assert (Tail != NULL && Tail->_next == NULL, "invariant" ) ; Tail->_next = iterator ; iterator->_prev = Tail ; iterator->_next = NULL ; } } else if (Policy == 2 ) { // prepend to cxq // prepend to cxq if (List == NULL) { iterator->_next = iterator->_prev = NULL ; _EntryList = iterator ; } else { iterator->TState = ObjectWaiter::TS_CXQ ; for (;;) { ObjectWaiter * Front = _cxq ; iterator->_next = Front ; if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) { break ; } } } } else if (Policy == 3 ) { // append to cxq iterator->TState = ObjectWaiter::TS_CXQ ; for (;;) { ObjectWaiter * Tail ; Tail = _cxq ; if (Tail == NULL) { iterator->_next = NULL ; if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) { break ; } } else { while (Tail->_next != NULL) Tail = Tail->_next ; Tail->_next = iterator ; iterator->_prev = Tail ; iterator->_next = NULL ; break ; } } } else { ParkEvent * ev = iterator->_event ; iterator->TState = ObjectWaiter::TS_RUN ; OrderAccess::fence() ; ev->unpark() ; } if (Policy < 4 ) { iterator->wait_reenter_begin( this ); } // _WaitSetLock protects the wait queue, not the EntryList. We could // move the add-to-EntryList operation, above, outside the critical section // protected by _WaitSetLock. In practice that's not useful. With the // exception of wait() timeouts and interrupts the monitor owner // is the only thread that grabs _WaitSetLock. There's almost no contention // on _WaitSetLock so it's not profitable to reduce the length of the // critical section. } Thread::SpinRelease (&_WaitSetLock) ; if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) { ObjectMonitor::_sync_Notifications->inc() ; } } |
notifyAll方法
與notify方法類似,只是在取_WaitSet隊(duì)列時(shí)不是取第一個(gè)而是取所有。
wait方法
wait方法是讓線程等待,它對(duì)應(yīng)的本地方法是JVM_MonitorWait,間接調(diào)用了ObjectSynchronizer::wait,與notify對(duì)應(yīng),它也是對(duì)應(yīng)調(diào)用ObjectMonitor對(duì)象的wait方法。該方法較長(zhǎng),這里不貼出來(lái)了,大概就是創(chuàng)建一個(gè)ObjectWaiter對(duì)象,接著獲取_WaitSet隊(duì)列鎖將ObjectWaiter對(duì)象添加到該隊(duì)列中,再釋放隊(duì)列鎖。另外,它還會(huì)釋放synchronized對(duì)應(yīng)的鎖,所以鎖沒(méi)有等到synchronized同步塊結(jié)束時(shí)才釋放。
1
2
3
4
5
6
7
8
9
10
|
JVM_ENTRY( void , JVM_MonitorWait(JNIEnv* env, jobject handle, jlong ms)) JVMWrapper( "JVM_MonitorWait" ); Handle obj(THREAD, JNIHandles::resolve_non_null(handle)); assert (obj->is_instance() || obj->is_array(), "JVM_MonitorWait must apply to an object" ); JavaThreadInObjectWaitState jtiows(thread, ms != 0 ); if (JvmtiExport::should_post_monitor_wait()) { JvmtiExport::post_monitor_wait((JavaThread *)THREAD, (oop)obj(), ms); } ObjectSynchronizer::wait(obj, ms, CHECK); JVM_END |
finalize方法
這個(gè)方法用于當(dāng)對(duì)象被回收時(shí)調(diào)用,這個(gè)由JVM支持,Object的finalize方法默認(rèn)是什么都沒(méi)有做,如果子類需要在對(duì)象被回收時(shí)執(zhí)行一些邏輯處理,則可以重寫finalize方法
總結(jié)
以上就是本文關(guān)于Java從JDK源碼角度對(duì)Object進(jìn)行實(shí)例分析的全部?jī)?nèi)容,希望對(duì)大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站其他相關(guān)專題,如有不足之處,歡迎留言指出。感謝朋友們對(duì)本站的支持!
原文鏈接:http://www.php.cn/java-article-374699.html