注:本文的多數據源配置及切換的實現方法是,在框架中封裝,具體項目中配置及使用,也適用于多模塊項目
配置文件數據源讀取
通過springboot的Envioment和Binder對象進行讀取,無需手動聲明DataSource的Bean
yml數據源配置格式如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
spring: datasource: master: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.mysql.cj.jdbc.Driver url: jdbc:mysql: //localhost:3306/main? useUnicode= true &characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&serverTimezone=Asia/Shanghai username: root password: 11111 cluster: - key: db1 type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.mysql.cj.jdbc.Driver url: jdbc:mysql: //localhost:3306/haopanframetest_db1? useUnicode= true &characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&serverTimezone=Asia/Shanghai username: root password: 11111 - key: db2 type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.mysql.cj.jdbc.Driver url: jdbc:mysql: //localhost:3306/haopanframetest_db2? useUnicode= true &characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&serverTimezone=Asia/Shanghai username: root password: 11111 |
master為主數據庫必須配置,cluster下的為從庫,選擇性配置
獲取配置文件信息代碼如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
@Autowired private Environment env; @Autowired private ApplicationContext applicationContext; private Binder binder; binder = Binder.get(env); List<Map> configs = binder.bind( "spring.datasource.cluster" , Bindable.listOf(Map. class )).get(); for ( int i = 0 ; i < configs.size(); i++) { config = configs.get(i); String key = ConvertOp.convert2String(config.get( "key" )); String type = ConvertOp.convert2String(config.get( "type" )); String driverClassName = ConvertOp.convert2String(config.get( "driverClassName" )); String url = ConvertOp.convert2String(config.get( "url" )); String username = ConvertOp.convert2String(config.get( "username" )); String password = ConvertOp.convert2String(config.get( "password" )); } |
動態加入數據源
定義獲取數據源的Service,具體項目中進行實現
1
2
3
|
public interface ExtraDataSourceService { List<DataSourceModel> getExtraDataSourc(); } |
獲取對應Service的所有實現類進行調用
1
2
3
4
5
6
7
8
9
10
|
private List<DataSourceModel> getExtraDataSource(){ List<DataSourceModel> dataSourceModelList = new ArrayList<>(); Map<String, ExtraDataSourceService> res = applicationContext.getBeansOfType(ExtraDataSourceService. class ); for (Map.Entry en :res.entrySet()) { ExtraDataSourceService service = (ExtraDataSourceService)en.getValue(); dataSourceModelList.addAll(service.getExtraDataSourc()); } return dataSourceModelList; } |
通過代碼進行數據源注冊
主要是用過繼承類AbstractRoutingDataSource,重寫setTargetDataSources/setDefaultTargetDataSource方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
// 創建數據源 public boolean createDataSource(String key, String driveClass, String url, String username, String password, String databasetype) { try { try { // 排除連接不上的錯誤 Class.forName(driveClass); DriverManager.getConnection(url, username, password); // 相當于連接數據庫 } catch (Exception e) { return false ; } @SuppressWarnings ( "resource" ) DruidDataSource druidDataSource = new DruidDataSource(); druidDataSource.setName(key); druidDataSource.setDriverClassName(driveClass); druidDataSource.setUrl(url); druidDataSource.setUsername(username); druidDataSource.setPassword(password); druidDataSource.setInitialSize( 1 ); //初始化時建立物理連接的個數。初始化發生在顯示調用init方法,或者第一次getConnection時 druidDataSource.setMaxActive( 20 ); //最大連接池數量 druidDataSource.setMaxWait( 60000 ); //獲取連接時最大等待時間,單位毫秒。當鏈接數已經達到了最大鏈接數的時候,應用如果還要獲取鏈接就會出現等待的現象,等待鏈接釋放并回到鏈接池,如果等待的時間過長就應該踢掉這個等待,不然應用很可能出現雪崩現象 druidDataSource.setMinIdle( 5 ); //最小連接池數量 String validationQuery = "select 1 from dual" ; druidDataSource.setTestOnBorrow( true ); //申請連接時執行validationQuery檢測連接是否有效,這里建議配置為TRUE,防止取到的連接不可用 druidDataSource.setTestWhileIdle( true ); //建議配置為true,不影響性能,并且保證安全性。申請連接的時候檢測,如果空閑時間大于timeBetweenEvictionRunsMillis,執行validationQuery檢測連接是否有效。 druidDataSource.setValidationQuery(validationQuery); //用來檢測連接是否有效的sql,要求是一個查詢語句。如果validationQuery為null,testOnBorrow、testOnReturn、testWhileIdle都不會起作用。 druidDataSource.setFilters( "stat" ); //屬性類型是字符串,通過別名的方式配置擴展插件,常用的插件有:監控統計用的filter:stat日志用的filter:log4j防御sql注入的filter:wall druidDataSource.setTimeBetweenEvictionRunsMillis( 60000 ); //配置間隔多久才進行一次檢測,檢測需要關閉的空閑連接,單位是毫秒 druidDataSource.setMinEvictableIdleTimeMillis( 180000 ); //配置一個連接在池中最小生存的時間,單位是毫秒,這里配置為3分鐘180000 druidDataSource.setKeepAlive( true ); //打開druid.keepAlive之后,當連接池空閑時,池中的minIdle數量以內的連接,空閑時間超過minEvictableIdleTimeMillis,則會執行keepAlive操作,即執行druid.validationQuery指定的查詢SQL,一般為select * from dual,只要minEvictableIdleTimeMillis設置的小于防火墻切斷連接時間,就可以保證當連接空閑時自動做保活檢測,不會被防火墻切斷 druidDataSource.setRemoveAbandoned( true ); //是否移除泄露的連接/超過時間限制是否回收。 druidDataSource.setRemoveAbandonedTimeout( 3600 ); //泄露連接的定義時間(要超過最大事務的處理時間);單位為秒。這里配置為1小時 druidDataSource.setLogAbandoned( true ); //移除泄露連接發生是是否記錄日志 druidDataSource.init(); this .dynamicTargetDataSources.put(key, druidDataSource); setTargetDataSources( this .dynamicTargetDataSources); // 將map賦值給父類的TargetDataSources super .afterPropertiesSet(); // 將TargetDataSources中的連接信息放入resolvedDataSources管理 log.info(key+ "數據源初始化成功" ); //log.info(key+"數據源的概況:"+druidDataSource.dump()); return true ; } catch (Exception e) { log.error(e + "" ); return false ; } } |
通過切面注解統一切換
定義注解
1
2
3
4
5
6
|
@Retention (RetentionPolicy.RUNTIME) @Target ({ElementType.METHOD, ElementType.TYPE, ElementType.PARAMETER}) @Documented public @interface TargetDataSource { String value() default "master" ; //該值即key值 } |
定義基于線程的切換類
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
public class DBContextHolder { private static Logger log = LoggerFactory.getLogger(DBContextHolder. class ); // 對當前線程的操作-線程安全的 private static final ThreadLocal<String> contextHolder = new ThreadLocal<String>(); // 調用此方法,切換數據源 public static void setDataSource(String dataSource) { contextHolder.set(dataSource); log.info( "已切換到數據源:{}" ,dataSource); } // 獲取數據源 public static String getDataSource() { return contextHolder.get(); } // 刪除數據源 public static void clearDataSource() { contextHolder.remove(); log.info( "已切換到主數據源" ); } } |
定義切面
方法的注解優先級高于類注解,一般用于Service的實現類
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
@Aspect @Component @Order (Ordered.HIGHEST_PRECEDENCE) public class DruidDBAspect { private static Logger logger = LoggerFactory.getLogger(DruidDBAspect. class ); @Autowired private DynamicDataSource dynamicDataSource; /** * 切面點 指定注解 * */ @Pointcut ( "@annotation(com.haopan.frame.common.annotation.TargetDataSource) " + "|| @within(com.haopan.frame.common.annotation.TargetDataSource)" ) public void dataSourcePointCut() { } /** * 攔截方法指定為 dataSourcePointCut * */ @Around ( "dataSourcePointCut()" ) public Object around(ProceedingJoinPoint point) throws Throwable { MethodSignature signature = (MethodSignature) point.getSignature(); Class targetClass = point.getTarget().getClass(); Method method = signature.getMethod(); TargetDataSource targetDataSource = (TargetDataSource)targetClass.getAnnotation(TargetDataSource. class ); TargetDataSource methodDataSource = method.getAnnotation(TargetDataSource. class ); if (targetDataSource != null || methodDataSource != null ){ String value; if (methodDataSource != null ){ value = methodDataSource.value(); } else { value = targetDataSource.value(); } DBContextHolder.setDataSource(value); logger.info( "DB切換成功,切換至{}" ,value); } try { return point.proceed(); } finally { logger.info( "清除DB切換" ); DBContextHolder.clearDataSource(); } } } |
分庫切換
開發過程中某個庫的某個表做了拆分操作,相同的某一次數據庫操作可能對應到不同的庫,需要對方法級別進行精確攔截,可以定義一個業務層面的切面,規定每個方法必須第一個參數為dbName,根據具體業務找到對應的庫傳參
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
@Around ( "dataSourcePointCut()" ) public Object around(ProceedingJoinPoint point) throws Throwable { MethodSignature signature = (MethodSignature) point.getSignature(); Class targetClass = point.getTarget().getClass(); Method method = signature.getMethod(); ProjectDataSource targetDataSource = (ProjectDataSource)targetClass.getAnnotation(ProjectDataSource. class ); ProjectDataSource methodDataSource = method.getAnnotation(ProjectDataSource. class ); String value = "" ; if (targetDataSource != null || methodDataSource != null ){ //獲取方法定義參數 DefaultParameterNameDiscoverer discover = new DefaultParameterNameDiscoverer(); String[] parameterNames = discover.getParameterNames(method); //獲取傳入目標方法的參數 Object[] args = point.getArgs(); for ( int i= 0 ;i<parameterNames.length;i++){ String pName = parameterNames[i]; if (pName.toLowerCase().equals( "dbname" )){ value = ConvertOp.convert2String(args[i]); } } if (!StringUtil.isEmpty(value)){ DBContextHolder.setDataSource(value); logger.info( "DB切換成功,切換至{}" ,value); } } try { return point.proceed(); } finally { if (!StringUtil.isEmpty(value)){ logger.info( "清除DB切換" ); DBContextHolder.clearDataSource(); } } } |
到此這篇關于springboot多數據源配置及切換的示例代碼詳解的文章就介紹到這了,更多相關springboot多數據源配置 內容請搜索服務器之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持服務器之家!
原文鏈接:https://www.cnblogs.com/yanpeng19940119/archive/2020/09/20/13702454.html